

Distributed Large-scale Network Modeling with
Paramics Implementation

Henry X. Liu, Wenteng Ma
Civil and Environmental Engineering
Utah State University
R. Jayakrishnan, Will Recker
Institute of Transportation Studies
University of California Irvine

ATMS Testbed Technical Report TTR3-07

This work was performed as part of the ATMS Testbed Research and Development
Program of the University of California, Irvine.* The contents of this report reflect the
views of the authors who are responsible for the facts and the accuracy of the data
presented herein. The contents do not necessarily reflect the official views of polices
of the State of California. This report does not constitute a standard, specification, or
regulation.

June 2005

* In cooperation with the California Partners for Advanced Transit and Highways

1

Abstract — Distributed simulation modeling is in urgent need
for two reasons: one is that the computational power
demanded by the large-scale microscopic traffic simulation
keeps increasing; the other is that independently and
incrementally developed sub-networks of a large region need
to be modeled simultaneously due to their interactions. In this
paper, we propose a distributed modeling framework which
including two categories of modeling strategies, namely, light
global control / independent subnets vs. heavy global control /
coordinated subnets. We have implemented the distributed
scheme of light global control / independent subnets and the
implemented details, such as communication techniques and
vehicle transferring across the boundary of two subnets are
discussed. Unlike the previous studies using the dedicated high
performance machines, our efforts are to utilize the low-cost
networked PCs that are commonly available. By using the
Application Programming Interface (API) functions
supported by off-the-shelf Paramics software, we are able to
distribute the computational load of microscopic simulation to
multiple single-processor PCs without access the proprietary
source codes of the simulation program. Performance testing
and analysis of the implemented prototype demonstrate that
the proposed framework is very promising.

I. INTRODUCTION
IMULATION modeling is an increasingly popular and

effective tool for analyzing transportation problems. A
traffic simulator for dynamic traffic management plays two
distinct roles: as an off-line evaluation / design tool and as
an on-line control / guidance tool. Both roles could be
computationally intensive and demand fast simulator to
fulfill their tasks.

Three primary types of simulation applications
immediately show the need for faster simulations: (1) Off-
line Planning: Many types of localized traffic jams, which
can only be produced on the micro-simulation level, affect
people’s modal and route choice. Integrated planning using

Manuscript received March 1, 2005. This work was supported by the
ATMS Testbed at UC-Irvine and the California Department of
Transportation.

Henry X. Liu* and Wenteng Ma are with the Department of Civil and
Environment Engineering, Utah State University, Logan UT, 84322 USA
(*phone: 435-797-8289; fax: 435-797-1185; email: xliu@cc.usu.edu).

R. Jayakrishnan and Will Recker are with the Institute of
Transportation Studies at the University of California, Irvine, USA.

microscopic modeling requires efficient simulations of
large networks of the kind needed for planning exercises.
(2) Online Control/Guidance and Emergency modeling:
The online simulation applications such as prediction for
traffic control require the model to run much faster than
real time. This is even more important if modeling is to be
used for emergency management requiring area-wide
evacuations. (3) Monte Carlo Analysis: The apparent global
stochasticity of traffic is captured in most modern
simulation approaches. In order to generate credible results,
multiple simulation runs are a must.

Although Moore’s law (the speed of a microprocessor
would double approximately every 18 months) has been
proven remarkably accurate to date [1], the complexity of
the systems we are interested in simulating also keep
increasing. Given the increasing network size requirements
for analysis, it would remain impossible in the near future
for a single processor to provide satisfactory simulation
performance. This implies that harnessing additional
processors in parallel and decomposing the problem
domain into sub-domains is an option of promise, and
perhaps the only solution.

Although dedicated high performance computing
systems can significantly reduce the computational time,
most transportation agencies cannot afford them. The most
optimistic and affordable computational environment in the
near future for most transportation agencies is a network of
personal computers (PCs) connected by local area network
(LAN). By distributing the computational load demanded
by large-scale simulation to the inexpensive networked
PCs, our goal is to relieve the computational burden and
speedup the simulation.

In addition to the above issues, decomposed and
distributed simulation scheme is a must when
independently and incrementally developing network data
sets and debugging the simulation cases in any operational
computer environment. For instance, it is nearly impossible
to develop a network data set for all of Los Angeles basin
or the San Francisco bay area without significant
decomposition of simulation efforts across analysts and
modeling personnel. Therefore after the independent sub-
networks are developed, there is a need to run these models
simultaneously due to the network interactions.

In this paper, we propose a distributed modeling
framework for the large-scale microscopic traffic

Distributed Large-scale Network Modeling
with Paramics Implementation

Henry X. Liu, Wenteng Ma, R. Jayakrishnan and Will Recker

S

2

simulation. In our proposed distributed simulation
environment, the target large network will be divided into
sub-networks, and each sub-network will be simulated on a
separate desktop PC. Our distributed computing
environment consists of a network of PCs operating under
Windows XP and connected by a 100 Mbps LAN within a
client–server framework. This type of computing
environment is low-cost and commonly available to the
transportation agencies, therefore the proposed framework
can be adopted readily. We have selected Paramics
(PARAllel MICroscopic Simulation) as the simulation
platform and developed a software toolkit using
Application Programming Interfaces (API) to demonstrate
the distributed modeling framework.

This paper is organized as follows. We first offer a brief
overview of previous efforts on the distributed traffic
simulation. We then present the general architecture of the
proposed distributed modeling framework. Two categories
of modeling strategies, namely, light global control /
independent subnets vs. heavy global control / coordinated
subnets are described. We have implemented the
distributed scheme of light global control / independent
subnets and the implemented details, such as
communication techniques and vehicle transferring across
the boundary of two subnets are discussed. Performance
testing and analysis of the implemented prototype are
followed. Finally, we offer concluding remarks and future
research directions in the last section.

II. LITERATURE REVIEW

A. Previous Efforts on Distributed Traffic Simulation
Distributed (or parallel) simulation is an application of

distributed computing which aims at decreasing the
computational time by engaging different processors of a
multiprocessor system or different computers of a network
to share the workload of a simulation program when latter
is executed [2]. There are a few traffic simulation
applications have adopted distributed computing
techniques, including Transportation Analysis and
Simulation System (TRANSIMS) [3], Advanced
Interactive Microscopic Simulator for Urban and Non-
Urban Networks (AIMSUN) [4], and Parallel Microscopic
Simulation (Paramics) [5], etc.

TRANSIMS is an integrated travel forecasting model
designed to give transportation planners information on
traffic impacts, congestions, and pollution. Distributed
implementation in TRANSIMS is based on a domain
decomposition principle, where the network is partitioned
into domains of approximately equal size, with each CPU
of the distributed computer responsible for one of these
domains [6]. AIMSUN is a microscopic simulation
program originally developed as a sequential, but later
exported to distributed computers [4]. For distributed

simulation implementation, AIMSUN uses a sequence of
instructions that executed within the context of a process to
handle a group of entities that need to be updated at every
time step. A process therefore can be executed in
distributed fashion by the multiple processors/computers
system.

B. Paramics Simulation Tools
Paramics is a suite of microscopic simulation tools used

to model the movement and behavior of individual vehicles
on urban and highway road networks [7]. It simulates the
components of traffic flow and congestion, and presents its
graphical animation output simultaneously for traffic
management and road network design. One important
feature of Paramics is that it allows the user to customize
many features of underlying simulation model through
API, so communication techniques such as message
passing can be programmed to link Paramics models in
different computers in the network.

Paramics was developed originally for a shared-memory
Connection Machine CM-200 with 16,000 processors in
1992, using a data-distributed approach and being able to
simulate approximate 200,000 vehicles on 20,000 miles of
road lanes [5]. However, to make good use of CM-200, the
data must be in a parallel array form so that operations can
occur in parallel on the elements of the array. In 1995,
based on the previous success, Paramics was further
developed using message-passing interfaces (MPI) and was
targeted on a 256-node CRAY T3D [5]. This solution,
named as Paramics-MP, could model 120,000 vehicles at
three times the real-time rates on 32 nodes of the T3D.
However, since Paramics Version 2.0, the commercial
Paramics-MP is not available in the market. Another
notable work on the Paramics parallelization is from the
group at the National University of Singapore [2]. The idea
was to divide the network into several regions and simulate
under different instances of the program simultaneously,
allowing transfer of vehicles at the boundaries of different
regions. The method was implemented in Paramics API on
a multi-processor UNIX System.

It must be noted that the above parallel simulation efforts
are quite different in nature with what is proposed here.
The majorities of them are targeted on the dedicated high
performance system with multi-processor and share
memory running UNIX system. Cares must be taken for the
programming of a parallel code to prevent simultaneous
access of same data in the share memory. The realization of
distributed simulation usually requires the access the
proprietary source codes of simulation software. Instead,
our efforts are to utilize the low-cost networked PCs that
are commonly available. By using the API supported by
off-the-shelf Paramics software, we are able to distribute
the computational load of microscopic simulation to
multiple single-processor PCs without access the

3

proprietary source codes of the simulation program. The
methodology proposed in this paper is a distributed
modeling framework especially suitable for path-level
computations across sub-network simulations.

III. DISTRIBUTED MODELING FRAMEWORK

A. General Architecture
Before deciding the distributed architecture, CPU time

consumed at each stage of the simulation process needs to
be measured in order to identify which of them should be
distributed. From the experience of parallelization efforts
other traffic simulation software and also verified by the
computation load study in our previous research [8],
individual vehicle updating at each time step is most time
consuming, and traffic detection and control is the second.
Therefore, the basic distributed architecture is to
decompose the large network into several sub-networks,
and each sub-network will be simulated on a separate
desktop PC.

Distributed computing systems predominantly use client-
server model. Under this model, one processor called the
client coordinates the other processors in the system, called
servers, to function as a single computational unit.
Coordination is performed through the message passing
among the client and the servers. Therefore, the general
distributed architecture will include at least one controller
(client) and several sub-network simulators (severs).
Although the controller may have various tasks related to
coordinating the traffic simulation itself, the essential task
from a computational architecture standpoint is the
synchronization of the time in each sub-network, either at
every simulation time-step or at specified intervals of times.
To synchronize the simulation time, the controller will have
to be able to start and stop the sub-network simulation at
any time.

During a simulation run, the controller and simulators
communicate over the distributed platform. The sub-
network simulators act as slaves to the controller. During a
time step of simulation or certain time interval, a simulator
executes a non-blocking loop (asynchronous
communication) while waiting for a new request from the
controller. A request is simply a message associated with a
specific task. When the request arrives into a sub-network
simulator, it starts with an execution of the corresponding
sequential code. When all simulators are “checked in”, the
simulation master clock advances by one step and
broadcasts the new times to every simulator in the system.
Each simulator then proceeds until it reaches the master
clock time. A pictorial description of the scheme to be used
for distributed processing is shown in Figure 1. Depending
on different simulation strategies, the controller-simulator
architecture could lead to different styles of design,

including light global control / independent subnets and
heavy global control / coordinated subnets, as described in
the following.

B. Light Global Control / Independent Subnets
The light global control / independent subnets design is

the simple form of distributed simulation. In this case, each
sub-network simulator has its own origin-destination
demand matrix and its own route tables, but its simulation
clock time is synchronized by the controller. In other
words, if the time synchronization from the controller is
removed, each sub-network simulator should be able to
perform its simulation independently. The only task for the
controller is to synchronize the time clock for each sub-
network.

Communication between subnet simulators is required
when an object (a vehicle) moves from one sub-network to
another. A message is sent from the originating simulator to
the receiving simulator describing the object, and the
“ownership” of the objects is thus transferred. Once the
transfer is confirmed, the vehicle object disappears at the
destination zone of the originating sub-network, and the
corresponding vehicle will be generated from the origin
zone in the receiving sub-network.

This design features easy implementation since the
vehicle routing has been taken care by the individual
simulator. On the other hand, since each simulator knows
only the local traffic condition in the sub-network, without
knowing the big picture of the large network, this design
may suffer from the unpractical or unrealistic routes taken

Master

Communication Middle Ware

Subnet
Simulator 3

Slave 3

Other
Supporting

APIs

Other
Supporting

APIs
Other

Supporting
APIs

Controller

Subnet
Simulator 2

Slave 2

Other
Supporting

APIs
Other

Supporting
APIs
Other

Supporting
APIs

Subnet
Simulator 1

Slave 1

Other
Supporting

APIs
Other

Supporting
APIs
Other

Supporting
APIs …

Fig. 1. General distributed modeling architecture

4

by some vehicles. Therefore the congestion pattern from
the simulation may be distorted from reality.

C. Heavy Global Control / Coordinated Subnets
The design with a heavy global controller and

coordinated subnets is at the other end of the spectrum,
compared to the previous design. In this case, not only will
the controller synchronize the time clock of simulators but
also contain the global abstract network, global O-D matrix
and global routing table. The global abstract network is a
simplified network from the original large network, and
used only for routing purposes. The controller will control
the vehicle generation in the sub-networks and the
individual vehicles' paths. The local traffic condition in the
sub-networks will be reported back to the controller and
used in the dynamic update of the global routing table.
When a vehicle comes to the boundary of the originating
sub-network, the controller will notify the receiving
network to generate an identical vehicle, and continue to
route the vehicle to the destination. Here, each sub-
network simulator is only used to update the individual
vehicle’s location according to the car-following, lane-
changing and gap-acceptance models, which are the most
time-consuming parts in microscopic simulation.

The benefit from this design is that vehicle’s origin-
destination and its path are all controlled at the global level,
as opposed to the local level in the previous design. In this
aspect, the design is similar to the simulation over single
processor in term of routing, with the distinction of
updating vehicle’s location over distributed processors.
But the communication load between the controller and
simulators is also significant higher than that of previous
design, which may slow down the simulation.

D. Communication Techniques
There are several communication technologies that are

popular used for distributed computation, including
Distributed Component Object Model (DCOM), Common
Object Request Broker Architecture (CORBA), and
Windows Socket Programming (Winsock). DCOM [9]
allows for peer-to-peer communications between
computers, and it allows for greater flexibility in the
Windows environment. The standard CORBA includes
three levels, including ORB, public object services, and
public applications [10]. CORBA is supported on almost
every combination of hardware and operating system in
existence. Windows Sockets enables programmers to create
advanced Internet, intranet, and other network-capable
applications to transmit application data across the wire,
independent of the network protocol being used. It defines
a standard service provider interface (SPI) between the
application programming interface (API), with its exported
functions and the TCP/IP protocol stacks [11]. Winsock is
a lower level but still effective communication technique

comparing with DCOM and CORBA. Considering the
complexity of the implementation of the DCOM and
CORBA techniques, Winsock programming is employed in
the proposed methodology.

E. Load Balancing
Since synchronous communication is used among

simulators and controller, each simulator can only run as
fast as the slowest one. So a proper and balanced
decomposition of the network is critical to the overall
performance. The computation load study in our previous
research [8] shows the total computational requirement for
a microscopic traffic simulation is dominated by the
number of vehicles in the network at any time, the ideal
division of network is to create N regions that each has
exactly V/N vehicles, where V is total number of vehicles
in the simulation and N is the target number of processors.
The speed-up performance of the distributed processing is
also dependent on the communication to computation
overhead: if there are a large number of communication
operations for each computational operation, the overall
process will reduce in speed. In order to minimize the
communication overhead, distributed simulations require
methodological decomposition of the large network to find
a subdivision where there are as few boundaries as possible
and the computational load is spread evenly across the
processors.

F. Synchronization Mechanism Using Conservative
Time Window (CTW)
In the research, in order to reduce the synchronization

overhead, we specify a time window that each sub-network
simulator is independent within these windows and can be
processed concurrently. The synchronization work will be
done at the end of each conservative time window, which is
greater or equal to the constant simulation time step. The
problem is how to choose a proper time window. If the
synchronization time window is too short, such as one
simulation time-step, then the faster simulators will always
waiting the slowest one and the synchronization overhead
will counter the benefits from the distributed simulation. If
the synchronization time is too long, the local causality
constraint may be significantly violated, meaning that when
the vehicle transferred from the slower simulators to the
faster one, the vehicle may be transferred behind. The
simulation would thus not be carried out correctly.

To circumvent this problem, we introduce the transfer
vehicle forecasting technique. Figure 2 shows the vehicle-
transfer status between sub-networks. Instead of detecting
the information and transferring vehicle at the boundary of
the sub-networks (Point B), a detector is put at certain
distance to the boundary (Point A), collecting and
transferring the vehicle with the forecasted simulation time
clock, which depends on the distance of the detector to the

5

boundary, the speed of the vehicle, and etc. In this way, the
local causality constraints are preserved, and then the
vehicles across the boundaries between two sub-networks
can be transferred at the right time, not ahead nor behind.

IV. PERFORMANCE TEST AND ANALYSIS

A. Prototype for Light Global Control / Independent
Subnets
Figure 3 shows the prototype of the distributed modeling

framework for the light global control / Independent
Subnets. As we mentioned before, this framework is
suitable for either decomposing the large-scale network
into smaller sub-networks, or joining some independent but
adjacent sub-networks and running them simultaneously
with vehicles being transferred across the sub-networks.

The working process is described as follows. First, the
controller will start the communication client and open a
socket to listen and send messages, and all the sub-
networks on the sever-computers will be loaded through
remote control. Meanwhile, the sever-computers will
automatic establish the connections with the client. After
all the sub-networks are loaded and all the servers are
successful connected with the controller client, Paramics
with different sub-networks will start the simulations
simultaneously. During each simulation run, the client and
the servers will communicate through the Windows Socket
platform. There are two types of message will be
transferred, one is the synchronized time clock information,
and the other is the vehicle transfer information. The
server-computer usually has different simulation speed due
to a variety of reasons. In order to synchronize all the
server simulators, the faster simulators need to wait the
slower ones after each synchronized time window that pre-
defined by the user, such as 30 seconds. Once a vehicle
arrive the boundary of the sub-networks, the vehicle
information will be sent from the “upstream” simulator,
collected and analyzed by the controller, and then
transferred to the “downstream” simulator. Such
communication processes will continue until all the servers
finish the simulations. Finally, the controller can output the
simulation results as a whole. If multiple runs needed, the

controller can also call the server simulators for the next
run.

B. Example Problem and Test Environment
An example large-scale grid network, as shown in Figure

4, was built to test the performance of the proposed
distributed modeling framework. The original network is
coded with 22 arterials, 120 signalized intersections, 44 O-
D demand zones, and the peak hour demand of the whole
network is 33840 vehicles. Three scenarios were tested
with this grid network. In Scenario 1, the grid network was
evenly divided by 2 parts and simulated at 2 clients with
the proposed distributed modeling framework. The sub-
network boundary includes 10 connections or transfer
zones. In Scenario 2, the grid network was evenly divided
by 3 parts and distributed simulated on 3 server simulators,
and in Scenario 3, four evenly divided networks were
simulated on four server simulators, the connection zones
are 10 for the left and right side parts , and 20 for the
middle parts.

Windows Socket Platform

Start & Open
Socket to Listen

Handle Client
Information

Controller

Load Subnet 1
Connect Client

Paramics
Simulation

Server 1

Synchronized Info
& Vehicle Info

…

Synchronized Info & Vehicle Info Using APIs

Synchronized Clock = N *
time-step, e.g. 30 seconds

Server &
Clients

Connection

Load Subnet 2
Connect Client

Paramics
Simulation

Load Subnet 3
Connect Client

Paramics
Simulation

Server 2 Server 3

Fig. 3. Prototype of the distributed modeling framework

Fig. 2. Transfer vehicle forecasting

B
Real boundary between

sub-networks

Forecasting time

A
Vehicle information

transfer point

6

Testing was carried on four desktop PCs: Scenario 1 was

carried at two desktops, each with one 2.8 GHz CPU
processor and 1 GB RAM. Scenario 2 was carried with one
additional workstation that has 3.2 GHz CPU processor and
2 GB RAM. Scenario 3 was carried with an additional
desktop with 2.5 GHz CPU and 1 GB RAM. Each server
computer was carried one part of the origin network in
Paramics Version 4. All other traffic conditions and
simulation configurations at each simulator are the same.

C. Benefits from the Distributed Modeling Framework
Figure 5 shows the benefits by dividing the large

network with different number of subnets. It is obviously
that we will get more benefits with more distributed
servers. However, because the communication load will be
significantly increased as the number of server increases,
the speed-up benefits from the distributed computing
schemes may be limited.

1.4

1.6

1.8

2.0

2.2

0 10 20 30 40 50 60 70

Synchronized Time Clock (sec)

S
pe

ed
up

2 servers

3 servers

4 servers

Fig. 5. Speed-up with different number of subnets

1.2

1.4

1.6

1.8

2.0

2.2

0 10 20 30 40 50 60 70

Synchronized Time Clock (sec)

S
pe

ed
up

Comparing with the slowest server (2.5G CPU, 1G RAM)

2 per sec

4 per sec

8 per sec

Fig. 6. Speed-up with different time-step —Four subnets
Figure 6 shows the speedup benefit of Scenario 3, the

large-scale gird network was evenly divided by 4 parts and
distributed simulated on four desktops. From the figure we
can see that as the synchronized time window increase, we
can achieve more benefits because of the communication
overhead is decreased and the waiting times of the faster
simulations are also decreased. Moreover, the benefit from
increasing the time-step, i.e., increasing the computational
load, is also significant. In this scenario, the benefit from
the proposed distributed modeling framework was up to 1.8
with 2 per second time-step, and up to 2.1 with 8 per
second time-step. Note that the pure computational load of
8 time steps per second is almost 4 times of that 2 time
steps per second.

V. CONCLUDING REMARKS
A distributed simulation modeling methodology for

large-scale network is proposed in this paper. In the
proposed framework, the sub-networks from either the
division of large-scale networks or being independently
developed but adjacent to each other can be simulated over
a cluster of networked PCs in a synchronized fashion.
Windows socket programming is employed as the
communication middle ware to transfer the synchronized
time clock and vehicle information between the client
controller and server simulators. The method was tested by
a grid network with 44 O-D demand zones and 120
signalized intersections with very promising results.

The research demonstrated in this paper is a light global
control and independent subnets design. To achieve a more
accurate distributed simulation results, the heavy global
controller and coordinated subnets design should be
considered in the further research, including develop the
algorithm for global routing, and network decomposition,
etc.

REFERENCES
[1] Moore, G. E. Cramming More Components onto Integrated Circuits.

Electronics, Vol. 38, No. 8, April 19, 1965.
[2] Lee, Der-Horng and Chandrasekar P. A Framework for Parallel

Traffic Simulation Using Multiple Instancing of A Simulation

Fig. 4. Example large-scale grid

7

Program, Intelligent Transportation Systems, Vol. 7, No. 3-4, pp.
279-294. 2002,

[3] Bernauer, E. Breheret, L., Algers, S., Boero, M., Taranto, C. D.,
Dougherry, M., Fox, K. and Gabard, J. F., Review of Micro-
Simulation Models Appendix D., Ref: SMARTEST/D3, Institute of
Transportation Studies, Leeds, U.K., University of Leeds, 1998.

[4] Barceló, J, Ferrer, J.L, García D., Florian, M. and E. Le Saux, The
Distributedization of AIMSUN2 Microscopic Simulator for ITS
Applications, Proc. 3rd. World Congress on Intelligent Transport
Systems, Orlando, 1996.

[5] Cameron, G. and Duncan, G., PARAMICS-Distributed Microscopic
Simulation of Road Traffic, The Journal of Supercomputing, Vol.10,
pp.25-53, 1996.

[6] Nagel, K., and Rickert, M., Dynamic Traffic Assignment on Parallel
Computers in TRANSIMS, Future generation computer systems,
Vol. 17, Issue 5, pp 637-648, 2001

[7] Quadstone Limited, Paramics User Guide Version 4.0, Quadstone
Limited, Edinburgh, UK, 2003.

[8] Liu, H., Ma, W. and Jayakrishnan, R. Distributed Modeling
Framework for Large-scale Microscopic Traffic Simulation. Proc. of
84th Annual Meeting of the Transportation Research Board (CD-
ROM), 2005.

[9] Microsoft Corporation. Distributed Component Object Model
Protocol-DCOM/1.0, draft, November 1996. Avalable:
http://www.microsoft.com/Com/resources/comdocs.asp

[10] Henning, Michi and Vinoski, Steve, Advanced CORBA
Programming with C++, Addison-Wesley Professional, 1999.

[11] Microsoft Corporation. MSDN Library Online.
Avalable:http://msdn.microsoft.com/library/en-
us/winsock/winsock/windows_sockets_start_page_2.asp

